PTE听力口语练习 – 科学60秒 – Quantum Mechanics

PTE考生目前最大的问题之一就是练习题缺乏。除了有限的基本官方书(PLUS,Testbuilder, OG)之外

就没有题了。很多英语基础不是很扎实的同学很难找到练习材料。悉尼文波雅思PTE培训学校专门为澳洲,尤其是悉尼、墨尔本的PTE考生准备了适合PTE听力阅读练习的科学60秒。各位PTE同学可以练习PTE听力中的summarise spoken text和PTE口语中的retell lecture,PTE听力口语-科学60秒-Frosty Moss练习记笔记技巧和复述。废话少说,下面开始:


60秒科学节目(SSS)是科学美国人网站的一套广播栏目,英文名称:Scientific American – 60 Second Science,节目内容以科学报道为主,节目仅一分钟的时间,主要对当今的科学技术新发展作以简明、通俗的介绍,对于科学的发展如何影响人们的生活环境、健康状况及科学技术,提供了大量简明易懂的阐释。


This is Scientific American — 60-Second Science. I’m Steve Mirsky.

Got a minute?


“The Royal Swedish Academy of Sciences has decided to award the 2016 Nobel Prize in Physics with one half to David J. Thouless and the other half to F. Duncan Haldane and J. Michael Kosterlitz for theoretical discoveries of topological phase transitions and topological phases of matter.”


Göran Hansson, secretary general of the academy, this morning. All three new Laureates were born in the U.K. and went on to U.S. institutions. Thouless is emeritus professor at the University of Washington. Haldane is at Princeton. And Kosterlitz is at Brown University.

“Professor Nils Mårtensson, the acting chairman of the Nobel Committee, will provide some introductory remarks on the Nobel Prize in Physics:”


“This year’s Nobel Prize recognizes important discoveries in the field of condensed matter physics. And today’s advanced technology, take for instance our computers, rely on our ability to understand and control the properties of the materials involved. And this year’s Nobel Laureates have in their theoretical work discovered a set of totally unexpected regularities in the behavior of matter, which can be described in terms of an established mathematical concept, namely that of topology. This has paved the way for designing new materials with novel properties. And there is great hope that this will be important for many future technologies.”


Following the announcement, Haldane joined in by phone to talk about the discovery.

“And at the time I felt it was of scientific interest and mathematical interest and very fascinating, as a consequence of quantum mechanics that we hadn’t guessed at. But I didn’t think it would ever find a practical realization. But if something is actually possible it’ll eventually, with material science, any kind of unexpected possibilities will lead to some concrete realization.”


“And these materials would have a possibility that information, either electronic or in other versions, could travel in one way around the edge of the system without the possibility of the information in the signal being disrupted by impurities or bends in the path. And so this aspect of things at least has a theoretical possibility of having great practical implications in subjects like the dream of building quantum computers. So it’s taught us that quantum mechanics can behave far more strangely than we would have guessed. And we really haven’t understood all the possibilities yet.”


Thanks for the minute for Scientific American — 60-Second Science Science. I’m Steve Mirsky.






您的电子邮箱地址不会被公开。 必填项已用*标注